(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)在平行四边形中,已知过点的直线与线段分别相交于点。若。(1)求证:与的关系为;(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。(3)设函数为上偶函数,当时,又函数图象关于直线对称,当方程在上有两个不同的实数解时,求实数的取值范围。
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率. (Ⅰ)求椭圆的标准方程; (Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
(本小题满分12分)如图,是半圆的直径,是半圆上除、外的一个动点,垂直于半圆所在的平面, ∥,,,. (1)证明:平面平面; (2)当三棱锥体积最大时,求二面角的余弦值.
某中学一名数学老师对全班名学生某次考试成绩分男女生进行了统计(满分分),其中分(含分)以上为优秀,绘制了如下的两个频率分布直方图: (Ⅰ)根据以上两个直方图完成下面的列联表: (Ⅱ)根据(Ⅰ)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系? (Ⅲ)若从成绩在的学生中任取人,求取到的人中至少有名女生的概率.
(本小题共12分)在极坐标系中,曲线,曲线C与有且仅有一个公共点. (1)求的值; (2)为极点,A,B为C上的两点,且,求的最大值.
(本小题共10分)已知函数 (1)解关于的不等式; (2)若的解集非空,求实数的取值范围.