已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(Ⅰ)求实数a,b间满足的等量关系;(Ⅱ)求线段PQ长的最小值;(Ⅲ)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1.(1)试求常数a、b、c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率
已知函数,求的单调区间
设函数对任意实数都有且时。 (Ⅰ)证明是奇函数; (Ⅱ)证明在内是增函数;(Ⅲ)若,试求的取值范围。
如图,在三棱锥P-ABC中,AP⊥平面ABC,底面是斜边为AB的直角三角形,AE⊥PB于点E,AF⊥PC于点F,求证:平面PAB⊥平面AEF.