(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
三个元件T1、T2、T3正常工作的概率分别为0.7、0.8、0.9,将它们的某两个并联再和第三个串联接入电路,如图甲、乙、丙所示,问哪一种接法使电路不发生故障的概率最大?
直线l过抛物线y2=2px(p>0)的焦点且与抛物线有两个交点,对于抛物线上另外两点A、B直线l能否平分线段AB?试证明你的结论.
是否存在都大于2的一对实数a、b(a>b)使得ab,,a–b,a+b可以按照某一次序排成一个等比数列,若存在,求出a、b的值,若不存在,说明理由.
已知非零复数z1,z2满足|z1|=a,|z2|=b,|z1+z2|=c(a、b、c均大于零),问是否根据上述条件求出?请说明理由.
在四棱锥P—ABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E. (1)使∠PED=90°; (2)使∠PED为锐角. 证明你的结论.