(本小题满分14分)如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知α=1690o, (1)把α表示成2kπ+β的形式(k∈Z,β∈). (2)求θ,使θ与α的终边相同,且θ∈(- 4π,- 2π).
直角坐标系xoy中,角的始边为x轴的非负半轴,终边为射线l:y=x (x≥0). (1)求的值; (2)若点P,Q分别是角始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.
已知数列的前n项和满足=, (1)写出数列的前3项; (2)求数列的通项公式 (3)证明:对于任意的整数,有
已知函数f(x)=-sin2x+sinx+a, (1)当f(x)=0有实数解时,求a的取值范围; (2)若,有1≤f(x)≤,求a的取值范围。
设命题实数满足(),命题实数满足, (1)若,且为真,求实数的取值范围; (2)若是的充分不必要条件,求实数的取值范围。