(本小题满分14分)如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知向量. (1)若,且,求的值; (2)定义函数,求函数的单调递减区间;并求当时,函数的值域.
如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点. (1)证明:EF∥平面ABC; (2)证明:C1E⊥平面BDE.
已知实数满足, 其中;实数满足. (1)若且为真, 求实数的取值范围; (2)若是的必要不充分条件, 求实数的取值范围.
(本题13分)已知以椭圆C:的短轴为直径,以原点为圆心的圆与直线相切,且椭圆椭圆C的离心率为. (1)求椭圆C的方程; (2)若是椭圆C上的两点,且轴,,连接直线交椭圆C于另一点(不同于点),试分析直线与轴是否相交于定点?若是,求出定点坐标;若不是,请加以证明.
(本题13分)某市现行出租车收费标准如下:不考虑其他因素下,每次运行起步价为(包括燃油附加费在内)4里内5元(不含4里),满4里后的续程运行价为每里跳表计费1元。 (1)若某乘客坐出租车行驶了()里,他应付给司机的费用(元)记作,求()的表达式. (2)令,构造函数,,若对任意,都有恒成立,试求的取值范围.