某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为(I)求徒弟加工2个零件都是精品的概率;(II)求徒弟加工该零件的精品数多于师父的概率;(III)设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
(本小题满分15分)某飞机失联,经卫星侦查,其最后出现在小岛附近.现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛到的距离为,船到小岛的距离为.(1)请分别求关于的函数关系式;并分别写出定义域;(2)当两艘船之间的距离是多少时搜救范围最大(即最大).
如图,在正方体中,分别是中点.求证:(1)∥平面;(2)平面.
【原创】(本小题满分14分)设是单位圆上三点,为锐角.(1)若求(2)若求三角形面积的最大值.
设集合,是的两个非空子集,且满足集合中的最大数小于集合中的最小数,记满足条件的集合对的个数为.(1)求的值;(2)求的表达式.