如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的。某“幸运转盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000分。先转哪个转盘由参与者选择,若第一次赢得积分,可继续转为另一个转盘,此时活动结束,若第一次未赢得积分,则终止活动。(1)记先转A转盘最终所得积分为随机量X,则X的取值分别是多少?(2)如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由。
已知数列的前项和为,且满足.(1)求证:数列是等比数列,并求数列的通项公式;(2)求证:.
已知单调递增的等比数列满足:,且是,的等差中项.(1)求数列的通项公式;(2)若,,求成立的正整数的最小值.
已知函数,直线,是图象的任意两条对称轴,且的最小值为.(1)求的表达式;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.
在中,角的对边分别是,若.(1)求角的大小;(2)若,的面积为,求的值.
已知圆的圆心为,,半径为,圆与离心率的椭圆的其中一个公共点为 ,,分别是椭圆的左、右焦点.(1)求圆的标准方程;(2)若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.