某校从参加高一年级期中考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
在△ABC中,已知a=2,b=,c=+1,求A
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上. (Ⅰ)求圆C的方程; (Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
已知数列的前n项和为,且=-n+20n,n∈N. (Ⅰ)求通项; (Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前n项和.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y=1交于P、Q两点,且 (Ⅰ)求∠PDQ的大小; (Ⅱ)求直线l的方程.
在△ABC中,角A,B,C所对的边分别为a,b,c且满足. (Ⅰ)求角C的大小; (Ⅱ)求的最大值,并求取得最大值时角A的大小.