设A为圆周上一定点,在圆周上等可能任取一点与A连接,求弦长超过半径倍的概率。
已知集合U=R,UA=,B={x|x2+3(a+1)x+a2-1=0},且A∪B=A,求实数a的取值范围.
写出下列命题的否命题及命题的否定形式,并判断真假:(1)若m>0,则关于x的方程x2+x-m=0有实数根;(2)若x、y都是奇数,则x+y是奇数;(3)若abc=0,则a、b、c中至少有一个为零.
指出下列命题的真假:(1)命题“不等式(x+2)2≤0没有实数解”;(2)命题“1是偶数或奇数”;(3)命题“属于集合Q,也属于集合R”;(4)命题“AAB”.
写出下列命题的否定并判断真假.(1)p:所有末位数字是0的整数都能被5整除;(2)q:x≥0,x2>0;(3)r:存在一个三角形,它的内角和大于180°;(4)t:某些梯形的对角线互相平分.
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.