设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
(本题满分14分) 已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。 (Ⅰ)求抛物线C的方程和点M的坐标; (Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点;
(本小题满分14分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)求学生小张选修甲的概率; (Ⅱ)记“函数为上的偶函数”为事件,求事件的概率; (Ⅲ)求的分布列和数学期望。
(本小题满分12分) 如图,在三棱锥中,底面ABC,, AP="AC," 点,分别在棱上,且BC//平面ADE (Ⅰ)求证:DE⊥平面; (Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
(本小题满分12分) 已知函数。 (Ⅰ)求的值域; (Ⅱ)若(x>0)的图象与直线交点的横坐标由小到大依次是,,…,,求数列的前项的和。
(本小题满分14分) 已知函数,.(其中为自然对数的底数), (Ⅰ)设曲线在处的切线与直线垂直,求的值; (Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围; (Ⅲ)当时,是否存在实数,使曲线C:在点 处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.