在中,为锐角,角所对应的边分别为,且(I)求的值; (II)若,求的值。
如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。(1)当E是BB1的中点时,证明:DE//平面A1B1C1;(2)求的值(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。
已知直线过点M(1,2),且直线与x轴正半轴和y轴的正半轴交点分别是A、B,(如图,注意直线与坐标轴的交点都在正半轴上)(1)若三角形AOB的面积是4,求直线的方程。(2)求过点N(0,1)且与直线垂直的直线方程。
已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10(1)确定函数的解析式;(2)用定义证明在R上是增函数;(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围。
)如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形。(1)求该几何体的全面积。(2)求该几何体的外接球的体积。
某宾馆有客房300间,每间日房租为100元时,每天都客满,宾馆欲提高档次,并提高租金,如果每间日房租每增加10元,客房出租数就会减少10间,若不考虑其他因素,该宾馆将房间租金提高到多少元时,每天客房的租金总收入最高,并求出日租金的最大值?