已知直线过点M(1,2),且直线与x轴正半轴和y轴的正半轴交点分别是A、B,(如图,注意直线与坐标轴的交点都在正半轴上)(1)若三角形AOB的面积是4,求直线的方程。(2)求过点N(0,1)且与直线垂直的直线方程。
(本小题共12分)已知定义在R上的函数f(x)=(a,b,c,d∈R)的图像关于原点对称,且x=1时,f(x)取得极小值 (1)求f(x)的解析式; (2)当x∈[-1,1]时,函数图像上是否存在两点,使得过此两点处的切线互相垂直?证明你的结论; (3)设时,求证:|.
(本小题共12分) 已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上. (Ⅰ)求椭圆E的方程; (Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程; (Ⅲ)O为坐标原点,⊙的任意一条切线与椭圆E有两个交点,且,求⊙的半径.
.(本小题满分12分) 设数列的各项均为正数,若对任意的正整数,都有成等差数列,且成等比数列. (Ⅰ)求证数列是等差数列; (Ⅱ)如果,求数列。的前。项和。
(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为错误!不能通过编辑域代码创建对象。且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
(本小题共12分)如图,在正方体ABCD —中E是AB的中点,O是侧面的中心.
C1
(1)求证:OB⊥EC ;
O
D
B