已知直线过点M(1,2),且直线与x轴正半轴和y轴的正半轴交点分别是A、B,(如图,注意直线与坐标轴的交点都在正半轴上)(1)若三角形AOB的面积是4,求直线的方程。(2)求过点N(0,1)且与直线垂直的直线方程。
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,∥AE,,,分别为的中点.(1)求异面直线与所成角的大小;(2)求直线和平面所成角的正弦值.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数).若直线与圆相切,求实数的值.
已知矩阵,(1)求逆矩阵;(2)若矩阵满足,试求矩阵.
已知函数,其中.(1)当时,求函数在处的切线方程;(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
已知数列满足,,,是数列 的前项和.(1)若数列为等差数列.①求数列的通项;②若数列满足,数列满足,试比较数列 前项和与前项和的大小;(2)若对任意,恒成立,求实数的取值范围.