如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。(1)当E是BB1的中点时,证明:DE//平面A1B1C1;(2)求的值(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。
已知抛物线. (1)若直线与抛物线相交于两点,求弦长; (2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点在上且,求点的轨迹方程.
已知复数满足:且是纯虚数,求复数.
已知函数在处有极大值. (Ⅰ)求的值; (Ⅱ)若过原点有三条直线与曲线相切,求的取值范围; (Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.
在直角坐标系xOy中,直线l的方程为x-y+4=0, 曲线C的参数方程为. (Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系; (Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值. (Ⅲ)请问是否存在直线m , m∥l且m与曲线C的交点A、B满足; 若存在请求出满足题意的所有直线方程,若不存在请说明理由。
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形. (Ⅰ)求出; (Ⅱ)利用合情推理的“归纳推理思想”归纳出与的关系式, (Ⅲ)根据你得到的关系式求的表达式.