设 p , q 为实数, α , β 是方程 x 2 - p x + q = 0 的两个实根,数列 x n 满足 x 1 = p , x 2 = p 2 - q , x n = p x n - 1 - q x n - 2 ( n = 3 , 4 , . . . ) . (1)证明: α + β = p , α β = q
(2)求数列 x n 的通项公式; (3)若 p = 1 , q = 1 4 ,求 x n 的前 n 项和 S n .
在中,角所对的边分别为,且满足,. (1)求的面积; (2)若,求的值.
已知函数. (1)求不等式的解集; (2)若关于的不等式的解集非空,求实数的取值范围.
已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)把的参数方程化为极坐标方程; (2)求与交点的极坐标().
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点. (1)证明:; (2)设圆的半径为1,,延长交于点,求外接圆的半径.
设. (1) 当时,取到极值,求的值; (2)当满足什么条件时,在区间上有单调递增区间?