半径为的圆外接于,且(1)求角; (2)求面积的最大值.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD, ,,E是BD的中点.(1)求证:EC//平面APD; (2)求BP与平面ABCD所成角的正切值; (3) 求二面角P-AB-D的大小.
如图所示,已知三棱柱ABC-的底面边长均为2,侧棱的长为2且与底面ABC所成角为,且侧面垂直于底面ABC. (1)求二面角的正切值的大小;(2)若其余条件不变,只改变侧棱的长度,当侧棱的长度为多长时,可使面和底面垂直.
已知向量=(,1),=(x,x2),=(-3,-x2+x),函数f(x)=·(+).(1)求函数f(x)的解析式与定义域;(2)求函数f(x)的值域.
设平面内的向量=(1,7),=(5,1),=(2,1),点P是直线OM上的一个动点,求当·取最小值时,的坐标及ÐAPB的余弦值.
若过定点A(2,0)的直线交椭圆+y2=1于不同的两点E、F(点E在点A、F之间),且满足=m,求实数m的取值范围.