A.选修4-1 几何证明选讲
如图,设 △ A B C 的外接圆的切线 A E 与 B C 的延长线交于点 E , ∠ B A C 的平分线与 B C 交于点 D .求证: E D 2 = E B · E C .
B.选修4-2 矩阵与变换
在平面直角坐标系 x O y 中,设椭圆 4 x 2 + y 2 = 1 在矩阵对应的变换作用下得到曲线 F ,求 F 的方程.
C.选修4-4 参数方程与极坐标
在平面直角坐标系 x O y 中,点 P ( x , y ) 是椭圆 x 2 3 + y 2 = 1 上的一个动点,求 S = x + y 的最大值.
D.选修4-5 不等式证明选讲
设 a , b , c 为正实数,求证: 1 a 3 + 1 b 3 + 1 c 3 + a b c ≥ 2 3 .
设数列的前项n和为,若对于任意的正整数n都有. (1)设,求证:数列是等比数列, (2)求证: (3)求数列的前n项和.
如图,在△ABC中已知∠B=60°,,D是BC边上的一点. (1)若AD=2,在△ACD的面积S=,求CD的长. (2)若AB=AD,试求△ACD面积S的最大值.
某公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元?
(1)解关于不等式. (2)证明:(其中).
已知等差数列的前n项和为,且, (1)求; (2)求的最大值.