设椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左右焦点分别为 F 1 , F 2 ,离心率 e = 2 2 ,右准线为 l , M , N 是 l 上的两个动点, F 1 M ⇀ · F 2 N ⇀ = 0 。
(Ⅰ)若 F 1 M ⇀ = F 2 N ⇀ = 2 5 ,求 a , b 的值; (Ⅱ)证明:当 M N 取最小值时, F 1 M ⇀ + F 2 N ⇀ 与 F 1 F 2 ⇀ 共线。
本小题满分10分)选修4-1:几何证明选讲 已知ABC中,AB="AC, " D是 ABC外接圆劣弧AC弧上的点(不与点A,C重合),延长BD至E。(1) 求证:AD的延长线平分CDE;(2) 若BAC=30°,ABC中BC边上的高为2+,求ABC外接圆的面积。
(本题满分12分)设函数,(1)若上的最大值(2)若在区间[1,2]上为减函数,求a的取值范围。(3)若直线为函数的图象的一条切线,求a的值。
(本小题满分12分)设直线与抛物线交于不同两点A、B,F为抛物线的焦点。(1)求的重心G的轨迹方程;(2)如果的外接圆的方程。
如图一,平面四边形关于直线对称,。把沿折起(如图二),使二面角的余弦值等于。对于图二,(Ⅰ)求;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值。
已知数列是首项的等比数列,其前项和中,,成等差数列,(1)求数列的通项公式;(2)设,若,求证:.