已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.
(本小题12分)已知如图,圆和抛物线,圆的切线与抛物线交于不同的点,.(Ⅰ)当直线的斜率为时,求线段的长;(Ⅱ)设点和点关于直线对称,问是否存在圆的切线使得?若存在,求出直线的方程;若不存在,请说明理由.
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。(Ⅰ)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;(Ⅱ)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。
【改编】(本小题满分12分)如图,设四棱锥的底面为菱形,且,,.(Ⅰ)证明:平面平面;(Ⅱ)设M、N分别为EC、ED的中点,求四棱锥的体积.
(本小题满分12分)设的内角,,所对的边长分别为,,且,.(Ⅰ)若,求的值;(Ⅱ)若的面积为3,求的值
(本小题满分10分)选修4—5:不等式选讲已知函数.(Ⅰ)求不等式的解集;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.