某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间n(以月为单位)的关系为=,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.
设,若,,.(1)求证:方程在区间(0,1)内有两个不等的实数根;(2)若都为正整数,求的最小值。
设函数的定义域是,且对任意的正实数都有恒成立. 已知,且时,.(1)求的值K](2)判断在上的单调性,并给出你的证明(3)解不等式.
要在墙上开一个上部为半圆,下部为矩形的窗户(如图所示),在窗框总长度为的条件下,(1)请写出窗户的面积与圆的直径的函数关系;(2)要使窗户透光面积最大,窗户应具有怎样的尺寸?并写出最大值.
设为定义在R上的偶函数,当时,;当时,的图像时顶点在P(3,4),且过点A(2,2)的抛物线的一部分(1)求函数在上的解析式;(2)在右面的直角坐标系中直接画出函数的图像;(3)写出函数值域。
、设集合,,且.(1)求的值;(2)求函数的单调递增区间,并证明.