某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间n(以月为单位)的关系为=,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.
(本小题满分14分)已知,函数. (1)求的单调区间; (2)证明:当时,.
(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点. 直线交椭圆于不同的两点. (1)求椭圆的方程; (2)求的取值范围; (3)若直线不过点,求证:直线与轴围成一个等腰三角形.
(本小题满分14分)若正项数列的前项和为,首项,点()在曲线上.源: (1)求数列的通项公式; (2)设,表示数列的前项和,求证:.
(本小题满分14分) 如图所示,在所有棱长都为的三棱柱中,侧棱,点为棱的中点. (1)求证:∥平面; (2)求四棱锥的体积.
(本小题满分12分)某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组,下图是按上述分组方法得到的频率分布直方图. (1)根据频率分布直方图,估计这名学生百米测试成绩的平均值; (2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率.