如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么曲线.
已知为抛物线的顶点,为这条抛物线互相垂直的两条动弦. 求证:直线必过一定点.
在5件产品中含有2件次品,从这5件产品中选出3件所含的次品数设为的分布列,并求的数学期望.
已知点在以两坐标轴为对称轴的椭圆上,你能根据点的坐标最多写出椭圆上几个点的坐标(点除外)?这几个点的坐标是什么?
已知抛物线的顶点在原点,焦点为圆的圆心. (1)求此抛物线方程; (2)如图,是否存在过圆心的直线与抛物线、圆顺次交于且使得,成等差数列,若存在,求出它的方程;若不存在,说明理由.
已知椭圆,过其左焦点且斜率为的直线与椭圆及其准线的交点从左到右的顺序为(如图),设. (1)求的解析式; (2)求的最值.