设a,b,c是三个互不相等的实数,三条抛物线:试用反证法证明三条抛物线中至少有一条与x轴的交点不只一个。
已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 (Ⅰ)求直线l的普通方程和曲线C的直角坐标方程; (Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1. (Ⅰ)求证:AC平分∠BAD; (Ⅱ)求BC的长.
己知函数 (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设,若对任意,恒有,求a的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,在直三棱柱中,平面侧面且. (Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.