设数列前项和为,满足 . (1)求数列的通项公式; (2)令 求数列的前项和; (3)若不等式对任意的恒成立,求实数的取值范围.
指出函数的单调区间.
已知集合,(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来;(3)若中至多只有一个元素,求的取值范围.
已知数列的前项和,满足,且,,求数列的通项公式.
设是由正数组成的比数列,是其前项和. (1)证明; (2)是否存在常数,使得成立?并证明你的结论.
求数列的前项和.