数列 a n 满足 a 1 = 1 , a n - 1 = n 2 + n - λ a n n = 1 , 2 , … , λ 是常数。 (Ⅰ)当 a 2 = - 1 时,求 λ 及 a 3 的值; (Ⅱ)数列 a n 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (Ⅲ)求 λ 的取值范围,使得存在正整数 m ,当 n > m 时总有 a n < 0 。
(本小题满分12分)热力公司为某生活小区铺设暖气管道,为减少热量损耗,管道外表需要覆盖保温层。经测算要覆盖可使用20年的保温层,每厘米厚的保温层材料成本为2万元,小区每年的气量损耗用(单位:万元)与保温层厚度(单位:)满足关系:若不加保温层,每年热量损耗费用为5万元。设保温费用与20年的热量损耗费用之和为 (1)求的值及的表达式; (2)问保温层多厚时,总费用最小,并求最小值。
(本小题满分12分)设是公比大于1的等比数列,为数列的前项和,已知且成等差数列。 (1)求数列的通项公式; (2)若求和:。
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F。 (1)证明PA//平面EDB; (2)证明PB⊥平面EFD;
(本小题满分12分)中,角的对边分别为,且 (1)求角的大小; (2)若求的面积。
(本小题满分12分)已知全集集合,集合 (1)求集合 (2)求