袋中装有大小相同的2个白球和3个黑球.(Ⅰ)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;(Ⅱ)采取不放回抽样方式,从中依次摸出两个球,记为摸出两球中白球的个数,求的期望和方差.
如图,△ABC中,AC=BC=AB,ABED是边长为1的正方形,EB⊥底面ABC,若G,F分别是EC,BD的中点. (1)求证:GF∥底面ABC; (2)求证:AC⊥平面EBC;
圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.
已知数列满足()且 (1)求的值 (2)求的通项公式 (3)令,求的最小值及此时的值
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用平均建筑费用平均购地费用,平均购地费用)
已知是等差数列,且 (1)求数列的通项公式及前项的和 (2)令,求的前项的和