椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)若,求直线PQ的方程;(Ⅲ)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明:.
设椭圆C: 过点, 且离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交直线于,若以MN为直径的圆恒过右焦点F,求的值
某校高一某班的一次数学测试成绩(满分100分)的茎叶图和频率分布直方图都受到不同程度的污染,但可见部分如下,据此解答如下问题:(Ⅰ) 求分数在[50,60)的频率及全班人数;(Ⅱ) 求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步。已知火箭的起飞重量M是箭体(包括搭载的飞行器)的重量m和燃料重量x之和。在不考虑空气阻力的条件下,假设火箭的最大速度y关于x的函数关系式为:当燃料重量为吨(e为自然对数的底数,)时,该火箭的最大速度为4(km/s).(1)求火箭的最大速度与燃料重量x吨之间的函数关系式;(2)已知该火箭的起飞重量是544吨 ,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s,顺利地把飞船发送到预定的轨道?
如图,三棱锥中,底面ABC于B,=900,,点E、F分别是PC、AP的中点。(1)求证:侧面;(2)求异面直线AE与BF所成的角;
设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦 点。(1)若椭圆C上的点A(1,)到F1、F2两点的 距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.