(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1. (1)求该抛物线的方程; (2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点. (3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以 为斜边的直角三角形.
若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为.(1)设,求的取值范围;(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.
已知等比数列中,,分别为的三内角的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.
已知函数(1)求的定义域.(2) 判断它的奇偶性并说明理由.(3) 判断它在区间上的单调性并说明理由.
已知集合,若,求实数m的取值范围.
计算机成本不断降低,若每隔 3 年计算机价格降低,现在价格为 8100 元的计算机,则 9 年后价格为多少元?