已知等比数列中,,分别为的三内角的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.
如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里,在A处看灯塔已在货轮的北偏西30°,距离为8海里,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处之间的距离.(2)灯塔C与D之间的距离.
已知双曲线(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.
已知双曲线的两个焦点为 (1)求双曲线C的方程; (2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
双曲线的中心在坐标原点,焦点在x轴上,分别为左右焦点,双曲线的左支上有一点P,,且的面积为,又双曲线的离心率为2,求该双曲线的标准方程.
已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(1)求双曲线的方程.(2)若点(3)在(2)的条件下