(理科)已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1)求椭圆的方程;(2)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
已知数列{}满足+=2n+1(1)求出,,的值; (2)由(1)猜想出数列{}的通项公式; (3)用数学归纳法证明(2)的结果.
某公司为了加大产品的宣传力度,准备立一块广告牌,在其背面制作一个形如△ABC的支架,要求∠ACB=60°,BC的长度大于2米,且AC比AB长1米.为节省材料,要求AC的长度越短越好,求AC的最短长度,且当AC最短时,BC的长度为多少米?
如图,直三棱柱中, ,. 分别为棱的中点.(1)求二面角的平面角的余弦值;(2)在线段上是否存在一点,使得平?若存在,确定其位置;若不存在,说明理由.
设实部为正数的复数满足,且在复平面上对应的点在第一、三象限的角平分线上.(1)求复数Z;(2)若为纯虚数 , 求的值.
已知正项等比数列若存在两项、使得,且有≥对上述恒成立,求x的取值范围.