在△OAB中,,AD与BC交于点M,设=,=,用,表示.
已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个点为.(1)求的解析式;(2)若求函数的值域;(3)将函数的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.
(本小题满分13分)是等差数列,是各项都为正数的等比数列,且,. (Ⅰ)求、的通项公式; (Ⅱ)求数列的前n项和。
(本小题满分12分)如图,在底面为直角梯形的四棱锥P—ABCD中,,平面(1)求证:平面PAC;(2) 求二面角的大小.
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.(1)求甲,乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工的概率;(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.
(本小题满分12分)在△ABC中,内角A,B,C所对边长分别为,,,(Ⅰ)求的最大值及的取值范围;(Ⅱ)求函数的最值.