如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直. 点M在AC上移动,点N在BF上移动,若CM=BN=.(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.
已知双曲线,,为双曲线的两个焦点,点在双曲线上,求的最小值.
如图,过椭圆的右焦点作一直线交椭圆于两点,且到直线的距离之和为,求直线的方程.
已知是椭圆上的点,求的取值范围.
已知椭圆的左、右焦点分别是,离心率为.直线与轴,轴分别交于点是直线与椭圆的一个公共点,是点关于直线的对称点.设. (Ⅰ)证明; (Ⅱ)若,的周长为,写出椭圆的方程; (Ⅲ)确定的值,使得是等腰三角形.
设点到,距离之差为,到轴,轴距离之比为,求的取值范围.