(本小题满分12分)一束光线从点出发,经直线l:上一点反射后,恰好穿过点.(1)求点的坐标;(2)求以、为焦点且过点的椭圆的方程; (3)设点是椭圆上除长轴两端点外的任意一点,试问在轴上是否存在两定点、,使得直线、的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点、的坐标;若不存在,请说明理由.
已知关于x的方程有实根,求这个实根以及实数k的值.
已知x是实数,y是纯虚数,且满足,求x与y.
已知关于t的一元二次方程 (1)当方程有实根时,求点的轨迹方程. (2)求方程的实根的取值范围.
设复数和复平面的点Z()对应,、必须满足什么条件,才能使点Z位于:(1)实轴上?(2)虚轴上?(3)上半平面(含实轴)?(4)左半平面(不含虚轴及原点)?
设(),,当取何值时,(1);(2)