(本小题满分12分)已知函数的定义域为(0,+∞),且满足对任意的>0,y>0,,.当>1时,>0.(1)求的值(2)判断的单调性,并加以证明(3)解不等式.
已知,函数.(1)设,将函数表示为关于的函数,求的解析式和定义域;(2)对任意,不等式都成立,求实数的取值范围.
如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径 ,,与之间的夹角为.(1)将图书馆底面矩形的面积表示成的函数.(2)求当为何值时,矩形的面积有最大值?其最大值是多少?(用含R的式子表示)
设平面向量=,,,,⑴若,求的值;(2)若,求函数的最大值,并求出相应的值.
已知均为锐角,且,.(1)求的值;(2)求的值.
已知是同一平面内的三个向量,其中(1)若,且,求:的坐标;(2)若,且与垂直,求与的夹角;