(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(4分)(2)获赔金额的分别列与期望。(9分)
已知为等差数列的前项和,且. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和公式.
已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC,∠ACD=30°,AD =. 求:(I)求CD的长; (II)求ΔABC的面积.
【选修4-5:不等式选讲】 已知函数. (1)解不等式:; (2)已知,求证:恒成立.
【选修4-4:坐标系与参数方程】 在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐 标分别为. (1)求圆C的普通方程和直线的直角坐标方程; (2)点P是圆C上任一点,求面积的最小值.
【选修4-1:几何证明选讲】 如图,的外接圆的切线AE与BC的延长线相交于点E,的平分线与BC相交于点D,求证: (1); (2).