已知函数.(1)将f(x)写成()的形式,并求其图像对称中心的横坐标;(2)如果△ABC的三边a、b、c满足,且边b所对的角为x,试求x的取值范围及此时函数f(x)的值域.
设数列的前项和为,且;数列为等差数列,且。 (1)求数列的通项公式; (2)若为数列的前项和,求证:。
已知函数定义域为(),设. (Ⅰ)试确定的取值范围,使得函数在上为单调函数; (Ⅱ)求证:; (Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用; (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
已知函数是偶函数。 (I)求k的值; (II)若方程的取值范围。