若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.(Ⅰ)求双曲线的方程;(Ⅱ)若过点与轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线在轴上截距的取值范围.
已知数列{}的前n项和 (n为正整数)。(1)令,求证数列{}是等差数列,并求数列{}的通项公式;(2)令,试比较与的大小,并予以证明.
已知椭圆C:(a>b>0),过点(0,1),且离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.
设函数,其中b≠0.(1)当b>时,判断函数在定义域上的单调性:(2)求函数的极值点.
四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=.(1)证明:SABC;(2)求直线SD与平面SAB所成角的正弦值.
某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为,B级考试合格的概率为.假设各级考试成绩合格与否均互不影响.(1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.