已知是纯虚数,求在复平面内对应点的轨迹.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.
四面体的六条棱中,有五条棱长都等于a.(1)求该四面体的体积的最大值;(2)当四面体的体积最大时,求其表面积.