设f(x)= (a>0)为奇函数,且 |f(x)|min=2,数列{an}与{bn}满足如下关系: a1=2,an+1=. (1)求f(x)的解析表达式; (2)证明:当n∈N+时,有bn≤()n.
(本小题满分13分) 用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问:该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
本小题满分13分) 已知函数=处的切线平行于直线,试求函数的极值。
已知过A(0,1)和且与x轴相切的圆只有一个,求的值及圆的方程.
.下图是一几何体的直观图、主视图、俯视图、左视图. (1)若F为PD的中点,求证:AF⊥面PCD; (2)证明BD∥面PEC;
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3)当直线l的倾斜角为45º时,求弦AB的长.