设f(x)= (a>0)为奇函数,且 |f(x)|min=2,数列{an}与{bn}满足如下关系: a1=2,an+1=. (1)求f(x)的解析表达式; (2)证明:当n∈N+时,有bn≤()n.
已知函数R).(1)若曲线在点处的切线与直线平行,求的值;(2)在(1)条件下,求函数的单调区间和极值;(3)当,且时,证明:
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围
已知某工厂生产件产品的成本为(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
关于某设备的使用年限和所支出的维修费用(万元),有如下的统计资料:
(1)如由资料可知对呈线形相关关系.试求:线形回归方程;(,)(2)估计使用年限为10年时,维修费用是多少?
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
附:
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。