已知,求函数得单调递减区间.
如图,长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求与平面所成的角大小.
设全集为,集合,.(1)求如图阴影部分表示的集合;(2)已知,若,求实数的取值范围.
已知直线经过直线与直线的交点,且垂直于直线.(1)求直线的方程;(2)求直线关于原点对称的直线方程.
如果函数满足在集合上的值域仍是集合,则把函数称为N函数.例如:就是N函数.(Ⅰ)判断下列函数:①,②,③中,哪些是N函数?(只需写出判断结果);(Ⅱ)判断函数是否为N函数,并证明你的结论;(Ⅲ)证明:对于任意实数,函数都不是N函数.(注:“”表示不超过的最大整数)
已知椭圆:的离心率为,右焦点为,右顶点在圆:上. (Ⅰ)求椭圆和圆的方程;(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.