设P是△ABC所在平面外一点,P和A、B、C的距离相等,∠BAC为直角.求证:平面PCB⊥平面ABC
在① ac = 3 ,② c sin A = 3 ,③ c = 3 b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 c 的值;若问题中的三角形不存在,说明理由.
问题:是否存在 △ ABC ,它的内角的对边分别为 a , b , c ,且 sin A = 3 sin B , C = π 6 ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
已知椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 2 2 ,且过点A(2,1).
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
已知函数 f ( x ) = a e x - 1 - ln x + ln a .
(1)当 a = e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.
如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l.
(1)证明: l⊥平面 PDC;
(2)已知 PD= AD=1, Q为 l上的点,求 PB与平面 QCD所成角的正弦值的最大值.
为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 和 S O 2 浓度(单位: μ g/ m 3 ),得下表:
S O 2
PM 2 . 5
[ 0 , 50 ]
( 50 , 150 ]
( 150 , 475 ]
[ 0 , 35 ]
32
18
4
( 35 , 75 ]
6
8
12
( 75 , 115 ]
3
7
10
(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;
(2)根据所给数据,完成下面的 2 × 2 列联表:
[ 0 , 150 ]
[ 0 , 75 ]
(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?
附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d ) ,
P ( K 2 > K )
0.050
0.010
0.001
K
3.841
6.635
10.828