如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正 三角形,且平面PDC⊥底面ABCD,E为PC的中点。
(I)求异面直线PA与DE所成的角;
B.选修4—2 矩阵与变换已知矩阵,其中,若点在矩阵的变换下得到点,(1)求实数a的值; (2)求矩阵的特征值及其对应的特征向量.
A.选修4—1 几何证明选讲在直径是的半圆上有两点,设与的交点是.求证:
.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由.(2)设,,若r>c>4,求证:对于一切n∈N*,不等式恒成立.
已知,函数.(1) 如果实数满足,函数是否具有奇偶性?如果有,求出相应的值,如果没有,说明为什么?(2) 如果判断函数的单调性; (3) 如果,,且,求函数的对称轴或对称中心.