已知顶点为原点的抛物线的焦点与椭圆的右焦点重合与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3)当直线l的倾斜角为45º时,求弦AB的长.
在长方体AC¢中,已知底面两邻边AB和BC的长分别为3和4,对角线BD¢与平面ABCD所成的角为450,求: (1)长方体AC¢的高; (2)长方体AC¢的表面积; (3)几何体C¢D¢-ABCD的体积.
已知椭圆的焦点坐标为,椭圆经过点 (1)求椭圆方程; (2)过椭圆左顶点M(-a,0)与直线上点N的直线交椭圆于点P,求的值。 (3)过右焦点且不与对称轴平行的直线交椭圆于A、B两点,点,若的斜率无关,求t的值
已知函数是函数的导函数,其中实数a是不等1的常数。 (1)设,讨论函数在区间内零点的个数; (2)求证:当内恒成立。
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,点M 是棱PC的中点,平面ABCD,AC、BD交于点O。 (1)求证:,求证:AM平面PBD; (2)若二面角M—AB—D的余弦值等于,求PA的长