如图,三棱柱中,△ABC是正三角形,,平面平面,.(1)证明:;(2)证明:求二面角的余弦值;(3)设点是平面内的动点,求的最小值.
已知n∈N*,求证:··……>.
已知|a|<1,|b|<1,求证:>1
已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m. (1)若m=4,求直线l被圆C所截得弦长的最大值; (2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
已知圆x2+y2-4ax+2ay+20(a-1)=0. (1)求证对任意实数a,该圆恒过一定点; (2)若该圆与圆x2+y2=4相切,求a的值
设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0. (1)求m的值; (2)求直线PQ的方程.