已知椭圆C的中心在原点,左焦点为F1,其右焦点F2和右准线分别是抛物线的顶点和准线. ⑴求椭圆C的方程;⑵若点P为椭圆上C的点,△PF1F2的内切圆的半径为,求点P到x轴的距离;⑶若点P为椭圆C上的一个动点,当∠F1PF2为钝角时求点P的取值范围.
(满分13分)已知,若在区间上的最小值为,求的值。
(本小题满分13分)已知等比数列的公比为,前项和为,且,现若以为首项,以公比作为公差d构造新的等差数列 (1)求通项(2)记,证明
(本小题满分12分)已知且,请求出与的值
(本小题满分12分)如图所示,△ABC中,∠A=60°、∠C=45°,BC=,现点D在AC边上运动,点E在AB边上运动(不与端点重合)且AD=BE=,设△ADE面积为S (1)写出函数式,并标出定义域。 (2)求出取何值时,S有最大值,并求之。
(本小题满分12分)函数的图像上相邻的最高点与最低点的坐标分别为和。 (1)求出的解析式。(2)找出图像的对称中心和的递增区间。