某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l且点P在直线上,与水平地面的夹角为a ,tana=1/2试问此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.(1)求证:平面EBC;(2求二面角的大小.
已知空间三点(1)求(2)求以AB,AC为边的平行四边形的面积。
(本小题满分14分)若函数满足:对定义域内任意两个不相等的实数,都有,则称函数 为H函数.已知,且为偶函数.(1) 求的值;(2) 求证:为H函数;(3)试举出一个不为H函数的函数,并说明理由.
(本小题满分14分)已知函数, 其中为常数,且函数图像过原点.(1) 求的值;(2) 证明函数在[0,2]上是单调递增函数;(3) 已知函数, 求函数的零点
(本小题满分12分)如图:A、B两城相距100 km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气. 已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离)(1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域;(2)天燃气供气站建在距A城多远,才能使建设供气费用最小.,最小费用是多少?