如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(I)求证:AF//平面BCE;(II)求证:平面BCE⊥平面CDE;(III)求平面BCE与平面ACD所成锐二面角的大小。
【选修4-5:不等式选讲】 已知函数 (1)当时,解不等式; (2)若存在,使得成立,求实数的取值范围.
【选修4-4:坐标系与参数方程选讲】 已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是. 求曲线C1与C2交点的极坐标; A、B两点分别在曲线C1与C2上,当|AB|最大时,求的面积(O为坐标原点)
【选修4-1:几何证明选讲】 如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G. (1)证明:PG=PD; (2)若AC=BD,求证:线段AB与DE互相平分.
设函数. (1)讨论的导函数的零点的个数; (2)证明:当
已知椭圆C:的离心率与双曲线的离心率互为倒数,且以抛物线的焦点F为右焦点. (1)求椭圆C的标准方程; (2)过右焦点F作斜率为的直线l交曲线C于M、N两点,且,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.