如图,在四棱锥中,底面为正方形,且平面,,、分别是、的中点. (Ⅰ)证明:EF∥平面PCD; (Ⅱ)求二面角B-CE-F的大小.
已知的顶点A在射线上,、两点关于x轴对称,0为坐标原点,且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.(Ⅰ)求轨迹W的方程;(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,求出直线;若不存在,说明理由.
设数列的前n项和为已知(Ⅰ)设证明:数列是等比数列;(Ⅱ)证明:.
在四棱锥中,侧面底面,,底面是直角梯形,,,,.(Ⅰ)求证:平面;(Ⅱ)设为侧棱上一点,,试确定的值,使得二面角为.
在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球。现在前后一共掷了4次骰子,设、分别表示甲、乙盒子中球的个数。(Ⅰ)求的概率;(Ⅱ)若求随机变量的分布列和数学期望。
的三个内角A,B,C所对的边分别为a,b,c, 向量且(Ⅰ)求的大小;(Ⅱ)现给出下列四个条件:①②③④.试从中再选择两个条件以确定,求出你所确定的的面积.