已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。
已知等差数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.
已知命题p:方程有两个不相等的实根;Q:不等式的解集为R;若p或Q为真,p且Q为假,求实数M的取值范围.
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
在平面直角坐标系中,有三个点的坐标分别是.(1)证明:A,B,C三点不共线;(2)求过A,B的中点且与直线平行的直线方程;(3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.