已知函数的图象过原点,,,函数y=f(x)与y=g(x)的图象交于不同两点A、B。(1)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;(2)若使g(x)=0的x值满足,求线段AB在x轴上的射影长的取值范围;
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点.(Ⅰ)求证:平面.(Ⅱ)求二面角的余弦值.
已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线的距离为3.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与直线相交于不同的两点M、N,问是否存在实数使;若存在求出的值;若不存在说明理由。
在平面直角坐标系中,直线与抛物线相交于不同的两点.(Ⅰ)如果直线过抛物线的焦点,求的值;(Ⅱ)在此抛物线上求一点P,使得P到的距离最小,并求最小值.
已知半径为的圆的圆心M在轴上,圆心M的横坐标是整数,且圆M与直线相切.求:(Ⅰ)求圆M的方程;(Ⅱ)设直线与圆M相交于两点,求实数的取值范围.
(本小题满分14分)已知:定义在R上的函数,对于任意实数a, b都满足,且,当.(Ⅰ)求的值;(Ⅱ)证明在上是增函数;(Ⅲ)求不等式的解集.