(I)已知函数在上是增函数,求得取值范围;(II)在(I)的结论下,设,,求函数的最小值.
选修坐标系与参数方程 已知直线(为参数)经过椭圆(为参数)的左焦点 (1)求的值; (2)设直线与椭圆交于、两点,求的最大值和最小值.
已知函数 (1)求函数在区间上的最大值; (2)若(其中为常数),当时,设函数的3个极值点为且证明
已知点、直线与相交于点且直线斜率与直线的斜率之差为点的轨迹为曲线. (1)求曲线的轨迹方程; (2)为直线上的动点,过做曲线的切线,切点分别为˴求的面积的最小值.
如图1,等腰梯形中,是的中点,如图2将沿折起,使面面连接是棱上的动点. (1)求证: (2)若当为何值时,二面角的大小为
已知数列是等差数列,是等比数列,其中且为、的等差中项,为、的等差中项. (1)求数列与的通项公式; (2)记,求数列的前项和.