2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断。5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进。在5月13日,仍时有较强余震发生,天气状况也不利于空中航行。已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是,从空中抵达灾区的概率是。(1)求在5月13日恰有1支队伍抵达灾区的概率;(2)求在5月13日抵达灾区的队伍数的数学期望。
(本小题8分)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6) (Ⅰ)连续抛掷2次,求向上的数不同的概率 (Ⅱ)连续抛掷2次,求向上的数之和为6的概率
(本小题8分) 已知 (Ⅰ) (Ⅱ)求的值.
(本小题满分14分) 已知函数,,且. (1)试求所满足的关系式; (2)若,方程有唯一解,求的取值范围.
已知定义 域为 0 , 1 的函数同时满足以下三个条件: ①对任意 x ∈ 0 , 1 ,总有 f ( x ) ≥ 0 ; ② f 1 = 1 ; ③若 ,则有 f x 1 + x 2 ⩾ f x 1 + f x 2 成立. (I)求 f 0 的值; (II)判断函数 g x = 2 x - 1 在区间 0 , 1 上是否同时适合①②③,并给出证明.
(本小题满分12分) 已知函数. (Ⅰ)当时,求的极小值; (Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.