过抛物线L:的焦点F的直线l交此抛物线于A、B两点,①求;②记坐标原点为O,求△OAB的重心G的轨迹方程.③点为抛物线L上一定点,M、N为抛物线上两个动点,且满足,当点M、N在抛物线上运动时,证明直线MN过定点。
(本题满分15分)已知向量,,. (Ⅰ)求函数的单调递减区间及其图象的对称轴方程; (Ⅱ)当时,若,求的值.
(本小题满分15分)如图,在平面直角坐标系中,椭圆的离心率为, 过椭圆右焦点作两条互相垂直的弦与.当直线斜率为时,. (Ⅰ)求椭圆的方程; (Ⅱ)求由、、、四点构成的四边形的面积的取值范围.
已知函数. (1)当时,求函数的单调区间; (2)若函数在上的最小值是,求的值.
关于的不等式. (Ⅰ)当时,解此不等式; (Ⅱ)设函数,当为何值时,恒成立?
已知曲线的极坐标方程是,直线的参数方程是(为参数). (Ⅰ)将曲线的极坐标方程化为直角坐标方程; (Ⅱ)设直线与轴的交点是,是曲线上一动点,求的最大值.